Exploring the Combination of Diffusion Models and Generative

Adversarial Networks

Group 11
Lauren Rouse (s4742379) - Malaika Vaz (s4699270) - Xuran Wang (s4838862)
Ganesh Channaiah (s4919002) - Mats Martinussen (s4946842)

1 Introduction

In the past few years, generative models have made great progress in the field of image gener-
ation. Popular systems such as OpenAI’s DALL-E (Betker et al., 2023) and GPT-40 (OpenAl
et al., 2024) have demonstrated how powerful generative Al can be in creating high quality
images. This advance largely rely on deep learning architectures like Generative Adversarial
Networks (GANs) and diffusion models. Our project explores the idea of combining the two
approaches into a hybrid model, with the goal of producing the best performing model possible.

This approach has seen some success in recent years, as highlighted by the results of Kim
et al. (2024). Their paper suggests that GAN and diffusion models can be combined in a way
that synergistically enhances the quality of generated images. We intend to employ a similar
idea in our project to fine-tune an existing diffusion model by attaching a discriminator, as in
GANS.

Our project uses pre-trained open-source diffusion and GAN models. We also trained diffu-
sion models from scratch—mot to optimize their standalone performance, but to enable discrim-
inator feedback at key points in the training loop. This let us experiment with various training
strategies and analyze their effect on performance.

In particular, we found that our approach leads to noticeable improvements in the more
challenging setting of unconditioned image generation, where the model has no label or category
guidance. Considering that we use limited computing resources, this result is particularly
encouraging. It indicates that even lightweight adversarial feedback can enhance the realism of
diffusion-generated images.

Our approach involves fine-tuning existing diffusion models using feedback from the discrimi-
nator from a GAN-architecture. The diffusion model follows a standard U-Net architecture, and
the discriminator follows different forms of convolutional neural network architectures. These
will be described in more detail later on.

Initially, we tested a variety of methods on an unconditioned diffusion model for the MNIST
dataset. We then employed the best techniques on both a conditioned model for the MNIST
dataset, as well as an unconditioned model for the CIFAR-10 dataset.

We quickly realized there were many potential methods to explore. The key differences lay
in what the discriminator was tasked with predicting—such as the final image, the noise, or a
noisy intermediate—and when its feedback was applied to the diffusion model: during a single
denoising step, after the full denoising process, or only at sampling time. Not all approaches
lead to clear improvements, but they all helped us better understand the limits of our method.

We make our code freely available on GitHub!.

2 Related Work

This project has been primarily inspired by the work of Kim et al. (2024). Their paper proposed
a simple mapping network to link the latent spaces of a pre-trained GAN and a diffusion model
with the aim of generating photo-realistic face images that outperformed existing diffusion and
GAN-based methods. This was achieved using a learning-based GAN inversion, with a diffusion
model serving as the encoder (Kim et al., 2024).

"https://github.com/Joov95 /stat3007-G11-2025

The models employed to execute this method were as follows: StyleGAN and EG3D were
used as pre-trained 2D and 3D GANSs, respectively, and ControlNet was selected as the diffusion-
based encoder (Kim et al., 2024). The model architecture was trained and tested on the
CelebAMask-HQ dataset (Lee et al., 2019), and the evaluation of the method using text prompts
with semantic masks or scribble maps as input for the 2D and 3D versions is shown in Figure 1

Input conditions Method Model Domain FID), LPIPS, SSIMtT IDT ACCtT mloU?
TediGAN [55] GAN 2D 54.83 0.31 0.62 0.63 81.68 40.01
IDE-3D [51] GAN 3D 39.05 0.40 0.41 0.54 47.07 10.98
Text + UaC [35] Diffusion 2D 45.87 0.38 0.59 0.32 81.49 42.68
. ControlNet [62] Diffusion 2D 46.41 0.41 0.53 0.30 82.42 42.77
semanticmask o borative [19] Diffusion 2D 4823 039 062 031 7406 30.69
Ours GAN 2D 46.68 0.30 063 076 8341 43.82
Ours GAN 3D 4491 0.28 064 0.78 8305 43.74
Text + ControlNet [62] Diffusion 2D 93.26 0.52 0.25 0.21 - -
. Ours GAN 2D 55.60 0.32 056 0.72 - -
scribble map Ours GAN D 4876 0.34 0.49 0.62))

Figure 1: Quantitative results of multi-modal face image generation on CelebAMask-HQ with
annotated text prompts

Kim et al. (2023) take a different approach by introducing discriminator guidance at sam-
pling time, rather than during training. Their method refines pre-trained diffusion models
by adjusting the denoising process based on feedback from a separately trained discriminator,
leading to improved image realism without requiring joint training.

In general, the work of Kim et al. (2024) and Kim et al. (2023) shows promising results
in experimenting with the combination of two distinct deep learning architectures to enhance
image generation. The results clearly show that it is possible to integrate GANs and diffusion
models in a way that leverages the strengths of both methods to create a hybrid model that
outperforms existing GAN and diffusion-based methods. Building on this, our project takes
a different approach by integrating discriminator guidance directly into the diffusion process
rather than at the latent or sampling level.

3 Methods

This section outlines the two models used to build our hybrid architecture: a diffusion model
and the discriminator component of a GAN. While we experimented with variations—such as
conditioned vs. unconditioned diffusion models, and time-conditioned vs. unconditioned dis-
criminators with either single or multiple inputs—the overall architectures remained consistent.
Minor adjustments were made depending on the dataset (e.g., MNIST vs. CIFAR-10) to account
for differences in input size.

3.1 Diffusion Model

Due to their architecture, diffusion models are generally expensive and time consuming to
train. Given this, and more importantly, our time and resources constraint for this project,
we decided to use an architecture we knew would work, namely the Google’s Deep Denoising
Diffusion Probabilistic Model (DDPM) Ho, Jain, and Abbeel (2020) as our diffusion model. The
DDPM model is a parameterized Markov chain trained using variational inference to generate
data samples that match a target distribution.(Ho, Jain, and Abbeel, 2020).

palXi_1]%)
Op @ @ —~Ep

Q‘(xr|1f l}

Figure 2: Directed graphical model (from Ho, Jain, and Abbeel (2020))

In the forward diffusion process, Gaussian noise is gradually added to the original data
sample over a series of steps, following a fixed variance schedule 3; , until the image becomes
nearly indistinguishable from random noise (Ho, Jain, and Abbeel, 2020). The reverse process
aims to undo this corruption. A U-Net is trained to denoise the data step by step, approximating
the reverse transitions of the diffusion process and reconstructing an image from noise.

During training, the model learns to predict the noise added at each timestep using a
simple mean squared error loss. While the objective is derived from a variational framework, it
reduces in practice to a straightforward regression task. The training and sampling procedures
are outlined in Figure 3.

Algorithm 1 Training Algorithm 2 Sampling

’l): repeat I: xp ~N(0,1)

2: Xo ~ q(xo) - 2 fort="T...., 1do

3t~ l.I’llf{}l‘Ill({l 1 }) 3 oz~ 'J\‘(OI} ift>1l.elsez=0

4: € ""..\ {OI) 1 1l —ox

5: Take gradient descent step on & xe1= (x, ' ﬁa‘{th)) + oz
Ve HE—Gﬂ{Vfﬂ_f)(u'f' v 1 —(_ME.f}HJ 5: end for

6: until converged 6: return xo

Figure 3: Training and Sampling algorithm for DDPM

3.2 Generative Adversarial Network

A typical GAN features an adversarial framework comprised of two distinct models: a generator
and a discriminator. The aim of the generator is to create new data samples from the training
data distribution, while the discriminator attempts to distinguish between real and generated
data from the generator.

The Deep Convolutional Generative Adversarial Network (DCGAN) is an extension of this
framework, first proposed by Radford, Met, and Chintala (2016), that uses convolutional net
architecture in both the generator and the discriminator, and applies batch normalisation to
make the DCGAN stable to train.

For our problem, we incorporated the DCGAN discriminator in our hybrid model, using the
feedback from the discriminator to fine-tune our diffusion model. As with our diffusion model,
we have chosen to use a discriminator from an open source DCGAN model that has been proven
to work on our datasets?.

Although pre-trained weights are available, we trained the discriminator from scratch in
most methods, as it was designed to predict noise rather than images, which the pre-trained
version is predicting. The architecture of our chosen discriminator is shown in Figure4, with
the input size being adjusted according to the dataset.

’https://github.com/csinva/gan-vae-pretrained-pytorch/blob/master/mnist_dcgan/dcgan.py

https://github.com/csinva/gan-vae-pretrained-pytorch/blob/master/mnist_dcgan/dcgan.py

Input
(nc)xMxBAH Conv2d J>{LeakyReLU }>{ Conv2d }->(BatchNorm2d}->(LeakyReLU }-»{_ Conv2d }>(BatchNorm2d}>(LeakyReLU }5{_ Conv2d }>(_ Sigmoid)

Figure 4: DCGAN Discriminator Architecture

The discriminator is comprised of multiple strided convolution layers, batch norm layers, and
LeakyReLU activations. It takes as input a 1x64x64 (can be changed) input image, processes
it, and, through a Sigmoid activation function, outputs a scalar probability that the input is
from the real data distribution (Inkawhich, 2018).

The code for our discriminator implementation is given in the appendix, Figure 15.

4 Experiments

This section will detail the specifics of our experimental methodology to develop the hybrid
model, including the datasets utilised, the training details, the evaluation metrics used, and our
findings for each method trialed. The details of the different algorithm training methods are
structured according to the order of experimentation.

4.1 Dataset

The datasets used for this project were MNIST and CIFAR-10.

The MNIST dataset is a collection of grayscale handwritten digits, along with associated
labels. The images represent digits from 0 to 9, and each image has a resolution of 28x28 pixels.
This dataset contains 60,000 training images and 10,000 testing images. The MNIST dataset
was chosen for this project with the aim of performing smaller-scale experiments to determine
the best performing techniques while developing our algorithm. These findings would then be
incorporated to extend our model to the CIFAR-10 dataset. A sample can be found in the
appendix, Figure 13.

The CIFAR-10 dataset is a collection of 60,000 colour images along with associated labels.
The CIFAR-10 images have a resolution of 32x32 pixels. Each image is from one of ten mutually
exclusive classes, with each class comprising of 6000 images. The ten classes are: airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. The dataset is separated into 5 training
batches and 1 test batch, each with 10,000 images (that is a roughly 80:20 split for training and
testing). A sample can be found in the appendix, Figure 14.

4.2 Algorithms

DDPM model The diffusion model was trained using an A100 GPU with a batch size of 128
and a schedule of beta values from le-4 to 0.02 with 300 timesteps. The model was trained on
5 epochs. An Adam optimizer was used with a learning rate of 1le-3 and an MSE loss function.

Two versions of this model were trained: an unconditioned UNet and a class conditioned
UNet model (both trained on MNIST). The key difference with the class conditioned UNet model
was that a one hot encoded representation of a number was included in input and classifier-free
guidance was added in sampling. Additionally, we attempted to fine-tune an unconditioned
UNet that was trained on CIFAR-10.

Method 1: Fine-tuning diffusion model based on feedback from full denoising
process. In our first attempt at improving the model, only the diffusion model was updated
based on feedback on the final output of the diffusion model. The hyperparameter combination
used were:

DDPM Schedule Values

— Betas (b_list)
—— Alphas (a_list)
—— Alpha Bars (a_bar_ist)

00

o 50 100 150 200 250 300
Timestep

Figure 5: DDPM schedule values at each timestep

Training Loss History (Logarithmic Scale)

—— Training Loss

Loss (log scale)

Epochs

Figure 6: Training loss for the class conditioned UNet

e Loss function: BCE (binary cross entropy) Loss
e num iter: 10

e Learning rate - discriminator: le-4

e num timesteps: 300

e seed offset: 1

e Optimizer: Adam

Method 2: Fine-tuning both the diffusion model and discriminator based on
feedback from full denoising process. To overcome the challenges of Method 1 (the diffu-
sion model very quickly fooled the discriminator), we decided to experiment with updating both
the diffusion model and the discriminator based on the final output of the diffusion mode. This
method showed improvement, however, a very small batch size need to be used to avoid GPU
memory issues due to the high compute requirements of backtracking the gradient through all
300 denoising iterations. As such, this was insufficient to achieve meaningful results on the
performance of this technique.

Method 3: Fine-tune diffusion model, train discriminator from scratch, both on
noise. In this method, we attempted to have the discriminator determine whether the given
data is real noise or generated noise, rather than attempting to distinguish real vs generated for
images. This method provided a better balance between the two models. Initially, the discrim-
inator alone was trained for one epoch, then both the diffusion model and the discriminator
were trained for 4 more epochs. The initial hyperparameters used were:

e Loss function: bee (binary cross entropy)

Weight initialization of discriminator: Pytorch default
e Learning rate - discriminator: le-4

e Learning rate - generator: le-5

e batch size: 128

e timesteps: 300

e Optimizer: Adam, betal = le-4 and beta2 = 0.02

Through trial and error, the optimal hyperparameters were determined (discussed further
in Results).

Method 3.5: Time-conditioned discriminator. An extension of the previous method
described, the time-conditioned discriminator was the most notable variation of the algorithm
attempted, as it provided the best result of all trialled methods. In this method, the time-step,
i.e. where in the denoising process we are, was also provided to the discriminator.

Method 4: Train on the next generated image in the denoising loop instead of
noise. In this method, we simply follow the sampling algorithm to generate the next image in
the denoising loop using the estimated noise from the diffusion model. As this only involves
some mathematical operations on the diffusion model’s output, this generally does not affect
backpropagation through the diffusion model. The idea was that by looking at something more
realistic, the discriminator could be better at distinguishing real from fake. We attempted to
increase model complexity by adding an additional convolutional layer and making the layers
wider; however, this did not have any impact on performance.

4.3 Metrics

The metrics used to evaluate our generative models were described by Betzalel et al., 2022.
They aim to provide objective measurements of qualitative features of the models such as
diversity and realism. They are not perfect metrics; this will be elaborated upon in each score’s
subsection. However, they should be good enough to at least provide a comparison between our
best models.

4.3.1 Inception Score (IS)

The Inception Score (IS) utilizes a pre-trained Inception v3 classifier (Szegedy et al., 2015). It is
a common metric used when evaluating generative image models. It is based on two principles:

e The conditional label distribution pg(y|z) should have low entropy (each image should
clearly belong to one class).

e The marginal label distribution pg(y) should have high entropy (the set of images should
cover many classes).

Unfortunately, in our case, the first assumption does not necessarily hold. This is because
Inception v3 was trained on ImageNet, whilst our models are trained on MNIST and CIFAR-10.
Hence, the classes for our use case will be different to the classes used by the Inception model;
each image in our dataset may not belong cleanly to one ImageNet class.

One way around this would be to use transfer learning to retrain the fully connected step
of Inception®. Inception would then be able to classify images on the MNIST and CIFAR-10

3This idea was actually attempted by S. Colianni on Kaggle, achieving roughly 95% classification accuracy on
MNIST (https://www.kaggle.com/code/scolianni/how-good-is-inception-v3-at-mnist).

datasets, and the first assumption could hold. Due to time and resource constraints, this idea
was discarded and so we proceed with an imperfect metric.
IS is computed as:

1S = exp (Eqnpe [K L(po(yl2)llpe(y))))

A higher score implies that the generated images are both distinctive and diverse. The code
for our implementation of IS is shown in the appendix, Figure 16.

4.3.2 Fréchet Inception Distance (FID)

The next metric against which our models will be evaluated is the so-called Fréchet Inception
Distance (FID). This score also utilizes an Inception v3 model - however, the classifications
themselves are not used. Instead, the features that are extracted before the final fully-connected
(classification) layer are used to generate multivariate Gaussian distributions of both the real
and generated images. These distributions are then compared using the FID score, where
generated images have distribution N(pg,>,) and real images have distribution N (g, X.).

FID = ||pr — M9H2 +Tr(X, + Xy — 2(27“29)1/2)

A lower score implies that the two distributions are more similar to one another - this can
be interpreted as the generated images being similar to the training images i.e. more ”realistic.”

Since the FID only uses the features of Inception v3 and not the classes themselves, this
should be a more reliable metric for our use case. Unfortunately, FID uses the sample covariance,
which is a biased estimator of covariance. After the non-linear transformations used to calculate
FID, the bias is not negligible - in particular, with low sample sizes, FID tends to be much higher.
The end result of this is that FID may still be helpful for comparing models, though the exact
numbers we achieve should not be compared to other FID scores as ours will be substantially
higher due to low sample sizes.

The code for our FID implementation is shown in the appendix, Figure 17.

4.3.3 Kernel Inception Distance (KID)

The final metric used for model comparison is the so-called Kernel Inception Distance (KID).
This functions quite similarly to the FID score - the main difference, however, is that KID
uses the features of Inception to generate distributions with polynomial kernels, which are then
compared using Maximum Mean Discrepancy (MMD). Since no covariance matrix is required,
the score remains statistically unbiased - this makes it particularly useful in our case, where we
are unable to work with large sample sizes. Similarly to FID, a lower KID score means that the
distributions are more similar to one another.
The KID (or, more accurately, the MMD that we compute between kernels) is given by:

MMD*(X,Y) = m(ml_l) SN k(i xg) - Q%Zzldri,gj) + n(nl_l)ZZk(gi,gj)

where (g1, g2, ..., gn) are the generated samples and (1,72, ..., 7) are the real samples.
The code implementation of this is shown in the appendix, Figure 18.

Unet samples without any finetuning

SMNESIE
[SN R Y 2
RNAND
RS
—[elilee] 0
L]l
NSENE
NSNS w] A~

Figure 7: Unconditioned

=

odel with no fine-tuning applied.

4.4 Results
4.4.1 MNIST - Unconditioned

Below is a sample of images produced by the diffusion model with no fine-tuning from the
discriminator.

The model was then fine-tuned via a variety of methods.

Method 1: only updating the diffusion model based on feedback on the full de-
noising process. This method did not work well, as the diffusion model very quickly learned
how to fool the pre-trained discriminator. The diffusion model either converges to outputting
one single image that fools the discriminator every time, or learns an image manifold that
does not look anything like real images. This is simply because the pre-trained discrimina-
tor is not robust enough. For this to work, the discriminator would have to know all kind of
pixel-combinations and if they are realistic, which it simply does not. A sample of the images
generated can be found in the appendix, Figure 19.

Method 2: updating both the diffusion model and the discriminator based on
feedback on the full denoising process. This method also did not work, although it per-
formed better than method one. Since this method requires backtracking the gradient through
all the denoising iterations (300 for our model), we have to use a very small batch size to not run
into GPU memory issues. A batch size this small is prone to overfitting, which makes it hard
for the model to generalize. Also, due to resource intensity, we do not have resources to achieve
meaningful results, even if the method would have worked well. This method was attempted
with both a pre-trained discriminator and a discriminator that was trained from scratch, with
poor results either way. A sample of the images generated can be found in the appendix, Figure
20.

Method 3: Fine-tune diffusion model, train discriminator from scratch, both on
noise. This method works to some degree. Instead of having the discriminator guess on final
images, we make it guess if something is real noise or noise generated by the diffusion model.
Many hyperparameter combinations were tested, with the best results being found with:

e Loss function: bee (binary cross entropy)
e Weight initialization of discriminator: Default by Pytorch
e Learning rate - discriminator: le-4

e Learning rate - generator: le-5

e batch size: 128
e Optimizer: Adam, betl = 0.5 and beta2 = 0.999
e Train only discriminator for one epoch, then both for 4 more epochs.

The optimal hyperparameters were chosen based on trial and error. A sample of images
from this method can be seen in the appendix, Figure 21.

Method 3.5: Providing the current denoising time-step to the discriminator. This
appears to have produced the best results out of all of the tested methods, and qualitatively
appears more clear and sensible than the model without fine-tuning.

Unet samples with feedback from method 3.5

SRk s
EaNOD
BNOED

Figure 8: Unconditioned model with feedback from method 3.5.

Method 4: Train on the next generated image in the denoising loop instead of
noise This method did not work very effectively. The discriminator did not manage to see any
difference between the two and gave them identical scores. This is likely because one single
denoising step removes very small amounts of noise (about 1/300 in our case), so the images
are very similar. A sample of generated images can be found in the appendix, Figure 22

4.4.2 MNIST - Conditioned

Below is a sample of images produced by the conditioned diffusion model with no fine-tuning

from the discriminator.
EIIEME [2] 8
7124

~
0|0

PSS
G0 o8

Ul
EEEE

S EIEYEY
Ul{“11

¥ 1S
£4 Slé|z]5]9

O] /]213]e]5]6]7]8]9

Figure 9: Conditioned model with no feedback from the discriminator.

'\‘_
Ry XN

Since method 3.5 had the best result on the unconditioned model, we apply it to the con-
ditioned model. The results of this are shown below. Unfortunately, though, it appears as
though no obvious improvement was made - in fact, the two seem nearly identical. The reason
for this is likely that the conditioned diffusion model is already too powerful to be significantly

improved by this process.

O[0[0]0]0)
~[S (SN~
EREENEN
WlW[0 O W]
L[]
u1|o7| | ut|
REGRR
NN N NN
og [e5]og g o0
ofofololo)

Figure 10: Conditioned model with feedback from method 3.5.

=
B

4.4.3 CIFAR-10

Below is a sample of images produced by the diffusion model trained on CIFAR-10 with no
fine-tuning from the discriminator.

SRR
U A L
OEAYS Embs
REIEN T o
o e Y B

Figure 11: Diffusion model trained on CIFAR-10 with no fine-tuning

Unfortunately, fine-tuning this model appears to have had negative effects on the image
quality. Applying method 3.5 to this model has made the images qualitatively more noisy, less
distinct and less sensible. It is possible that this was due to a poor choice of hyperparameters -
due to time constraints, only the hyperparameters mentioned earlier could be tested. A model
trained on a more complex dataset (such as CIFAR-10 with its three colour channels and many
class labels) would likely be more sensitive to hyperparameters, so this could warrant further
exploration.

We also experimented with the approach proposed by Kim et al. (2023), which applies
discriminator guidance during sampling without updating either the diffusion model or the
discriminator during training. This method is appealing due to its stability and simplicity.
However, it relies heavily on a well-trained discriminator, which we lacked. As a result, the
guidance signal was too weak or inconsistent, and the generated images failed to resemble
meaningful outputs.

10

e B ALY

Figure 12: Diffusion model trained on CIFAR-10 with feedback from method 3.5

4.4.4 Best model comparisons

The best models were found to be:

e Unconditioned - Method 3.5: Providing the current denoising time-step to the discrimi-
nator.

e Conditioned - Method 3.5
e CIFAR-10 - Method 3.5

Their metrics are provided below. Due to technical constraints with the size of the CIFAR-10
models, some scores could not be computed.

Method Unconditioned Unconditioned Conditioned Conditioned CIFAR-10 CIFAR-10
Score without fine-tuning | best method | without fine-tuning | best method | without fine-tuning | best method
IS 2.14 + 0.16 2.10 + 0.12 1.99 £ 0.13 1.99 £ 0.13 X 4.52 £ 0.57
FID 54.91 45.86 84.74 84.74 X 103.32
KID 0.0348 0.0236 0.0719 0.0718 X X

Table 1: Comparison of best methods using IS, FID and KID scores.

The results more or less align with what was qualitatively observed. The unconditioned
model was the most improved by fine-tuning, with a substantially lower FID and KID score
indicating a higher realism, which aligns with what was seen in the images. The conditioned
model also showed almost no change in metrics between the baseline model and the best method,
as expected.

Oddly, however, the conditioned models have much higher FID and KID scores than the
unconditioned model, even though the conditioned model appeared to produce much clearer
images. This is likely because the ImageNet dataset does not contain classes for handwritten
digits. Recall that Inception, the model used in calculating these metrics, was trained on the
ImageNet dataset. It is possible that, as the generated images resemble their corresponding
MNIST classes more, they contain features less relevant to the ImageNet dataset. As a result,
Inception may not be extracting relevant enough features for a true comparison between the
real and generated images, resulting in higher ”distances” (in the distribution sense) between
the two datasets. This could be another symptom of the imperfect metrics we use; perhaps
a model similar to inception but trained to extract features from the MNIST dataset would
provide results closer to what is expected.

Due to the technical constraints in obtaining the scores for the CIFAR-10 models, a quan-
titative analysis is difficult. However, we can see that the CIFAR-10 model had a substantially

11

higher IS than the other models. Recall that one of the assumptions of the IS method was
that each image should clearly belong to one (ImageNet) class. Whilst this assumption likely
still does not hold true for CIFAR-10, it is probable that the images in CIFAR-10 more closely
resemble the images from ImageNet, being that they are both datasets of real world objects.
This, along with the fact that the coloured images of CIFAR-10 allow for more diversity in im-
ages, would explain the much higher IS compared to the models trained on the MNIST dataset.
However, this does not mean that the CIFAR-10 model performed well at all - qualitatively, the
images were substantially worse after fine-tuning, as discussed earlier.

5 Conclusion

5.1 Limitations

We were limited by GPU memory and time, which means that we were only able to train our
models for a few epochs. With more computing power, we expect that these techniques could be
used to produce higher quality models than the ones we managed. This is especially true in the
case of our model for the CIFAR-10 dataset, where due to time constraints we were unable to
test a large variety of hyperparameters. This means we are unable to conclusively say whether
our method could work well in extending a diffusion model for CIFAR-10.

The conditional diffusion model was, in all likelihood, too powerful to be meaningfully
improved by our techniques, at least with our computing power. It is possible that, with more
computing resources, these methods could still be used to improve slightly upon a conditional
diffusion model for the MNIST dataset.

Our evaluation metrics are imperfect and could be improved in a multitude of ways. An
Inception-like classifier trained to classify MNIST images would be a much more suitable model
to use for the metrics used to evaluate the models. Due to time constraints, we were unable to
implement this. A more powerful computing setup that allows for larger sample batches would
also improve the quality of FID as a metric, as its bias would become less apparent with a
higher sample size.

5.2 Final Thoughts

We present a novel approach for generating images, by combining the architectures of diffusion
and generative adversarial networks. We experimented with three main types of models - an
unconditioned diffusion model, trained on MNIST, a conditioned diffusion model, also trained
on MNIST, and an unconditioned model, trained on CIFAR-10. Multiple methods were tested,
with the best method found to be fine-tuning the diffusion model and training a discriminator
from scratch alongside it, both on the intermediate noise from each diffusion step. In addition,
providing the time-step to the discriminator seemed to have a positive effect on the results. The
technique showed promising results in the difficult realm of the unconditioned models. However,
the conditioned model was already quite robust and difficult to improve upon. Furthermroe,
the diffusion model trained on CIFAR-10 appeared to have been made worse by our methods,
though it is unclear if, given enough experimentation with hyperparameters, these techniques
could still be used to improve the model.

12

Contribution

e Mats: Design and implementation of the various methods tested.

e Lauren: Further research into metrics; Introduction, Conclusion, Metrics and Results
sections of report.

e Malaika: Reviewed the literature and wrote Related Work, Methods, Dataset and Algo-
rithm sections of report.

e Xuran: Initial implementation of metrics; initial research into metrics. Retrieved results
of the various methods.

e Ganesh: Experimentation with various hyperparameters.

References

Betker, J. et al. (2023). Improving Image Generation With Better Captions. https://cdn.
openai.com/papers/dall-e-3.pdf.

Betzalel, E. et al. (2022). A Study on the Evaluation of Generative Models. arXiv: 2206.10935
[cs.LG]. URL: https://arxiv.org/abs/2206.10935.

Ho, J., A. Jain, and P. Abbeel (2020). Denoising Diffusion Probabilistic Models. arXiv: 2006 .
11239 [cs.LG]. URL: https://arxiv.org/abs/2006.11239.

Inkawhich, N. (2018). DCGAN Tutorial. URL: https ://docs . pytorch. org/tutorials/
beginner/dcgan_faces_tutorial.html.

Kim, D. et al. (2023). Refining Generative Process with Discriminator Guidance in Score-based
Diffusion Models. arXiv: 2211.17091 [cs.CV]. URL: https://arxiv.org/abs/2211.17091.

Kim, T. et al. (2024). “Diffusion-Driven GAN Inversion for Multi-Modal Face Image Gen-
eration”. In: Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition (CVPR).

Lee, C.-H. et al. (2019). MaskGAN: Towards Diverse and Interactive Facial Image Manipulation.
arXiv: 1907.11922 [cs.CV]. URL: https://arxiv.org/abs/1907.11922.

OpenAl et al. (2024). GPT-40 System Card. arXiv: 2410 .21276 [cs.CL]. URL: https://
arxiv.org/abs/2410.21276.

Radford, A., L. Met, and S. Chintala (2016). Denoising Diffusion Probabilistic Models. arXiv:
1511.06434 [cs.LG]. URL: https://arxiv.org/pdf/1511.06434.

Szegedy, C. et al. (2015). Rethinking the Inception Architecture for Computer Vision. arXiv:
1512.00567 [cs.CV]. URL: https://arxiv.org/abs/1512.00567.

13

https://cdn.openai.com/papers/dall-e-3.pdf
https://cdn.openai.com/papers/dall-e-3.pdf
https://arxiv.org/abs/2206.10935
https://arxiv.org/abs/2206.10935
https://arxiv.org/abs/2206.10935
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://docs.pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://docs.pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://arxiv.org/abs/2211.17091
https://arxiv.org/abs/2211.17091
https://arxiv.org/abs/1907.11922
https://arxiv.org/abs/1907.11922
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1511.06434
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567

Appendix

EEARAS EEEEE A A AEE e E
AinpoannanonnnEano
BEREEEENEEREERABEER
EIEIHEIEIHEIBEIEEEBESHEHEE
7]
I

e
I

(= 2 I 2 2 3 172 13 2 6 0 e S K2 B3 C1) P e
Slos s|ssis]s]slsSls] AT c]5] :
eleléeleleléfelclelefolelclelele]o]él
FAAAAANEaRNaEeEana
AREBEROGEEAEEER III
(elslglalalslslalalalal sl ol 717]19]8] 7] 718

Figure 13: Sample of MNIST images

airplane %V. V..;"':
automobile EEE“E‘
bird imB I8 FEEN
ca ﬁﬁ@...ﬁ.* &
deer H.H‘.ﬁﬁ.mg
HE~AsBrga s
WA=
A N EE R
ship Bl RS e
ek R S o R

Figure 14: Sample of CIFAR-10 images

dog
frog

horse

14

Discriminator(nn.Module}:
init_ (self, ngpu, nc=1, ndf=64):
super(Discriminator, self).__init_ ()
self.ngpu = ngpu
self.main = nn.Sequential(

ndf * 2, ndf = 4, 4, 2, 1, bias=Fa

yrm2d (ndf * 4),
2, inplace=Tr

4, 2, 1, bias=False),

def fo rd(self, input):
if input.is_cuda self.n
output = nn.parall ata_parallel(self.main, input, range(self.ngpu))
output = self.main(input)
-1, 1).s

Figure 15: Python code for DCGAN discriminator implementation

f calculate inception_score(probs, splits=18):
scores = []
n = len(probs)
E 1t st
for 1 in range(splits):
part = probs[i * n // splits: (i + 1) * n // splits]
py = np.mean(part, axis=8)

kl div = part * (np.log(part + 1e-18) - np.log(py + le-18))
scores.append(np.exp(np.mean{np.sum{kl_div, axis=1))))
return np.mean{scores), np.std{scores)

Figure 16: Python code for Inception Score implementation.

15

FID
calculate fid(mul, sigmal, mu2, sigma
diff = mul - mu2
covmean = sqrtm(
if np.iscomple
mean = covmean.re
diff.dot(diff) + np.trace(sigmal + sigma2 - 2 * covmean)

len({real features), len(gen_featur:
n (np.sum{k_rr) - np.trace(k_rr))
- np.trace(k_gg))

Figure 18: Python code for Kernel Inception Distance (KID) implementation.

DDPM samples after some finetuning with GAN feedback

Figure 19: Unconditioned model with feedback from method 1.

NEEEE
ﬂl!ﬂl

EEEND
BEECER
EECER
NENEE
STeS]E[E

Figure 20: Unconditioned model with feedback from method 2.

PIT D
DO
Ir|o A B

Figure 21: Unconditioned model with feedback from method 3.

N~
H S

H
: F
z
g

SO s

Figure 22: Unconditioned model with feedback from method 4.

17

We give consent for this to be used as a teaching resource.

18

	Introduction
	Related Work
	Methods
	Diffusion Model
	Generative Adversarial Network

	Experiments
	Dataset
	Algorithms
	Metrics
	Inception Score (IS)
	Fréchet Inception Distance (FID)
	Kernel Inception Distance (KID)

	Results
	MNIST - Unconditioned
	MNIST - Conditioned
	CIFAR-10
	Best model comparisons

	Conclusion
	Limitations
	Final Thoughts

